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Abstract—An enthalpy formulation based fixed grid methodology is developed for the numerical solution
of convection—diffusion controlled mushy region phase-change problems. The basic feature of the proposed
method lies in the representation of the latent heat of evolution, and of the flow in the solid-liquid mushy
zone, by suitably chosen sources. There is complete freedom within the methodology for the definition of
such sources so that a variety of phase-change situations can be modelled. A test problem of freezing in a
thermal cavity under natural convection is used to demonstrate an application of the method.

1. INTRODUCTION

A LARGE number of numerical techniques are avail-
able for the solution of moving boundary problems,
a comprehensive review has been presented by Crank
[1]. The majority of these techniques are concerned
with phase change in which conduction is the principal
mechanism of heat transfer. In physical systems which
involve a liquid—solid phase change, however, con-
vection effects may also be important. As such, the
problem of freezing of a pure liquid in a thermal cavity
under conduction and natural convection has received
some attention in recent years. For example see Rama-
chandran er al. [2], Gadgil and Gobin [3] and Albert
and O'Neill [4]. In these works, a temperature for-
mulation is used, and in order to treat the moving
liquid-solid interface, deforming grids have been
employed. An alternative approach is to use an
enthalpy formulation in which case no explicit con-
ditions on the heat flow at the liquid-solid interface
need to be accounted for and therefore the potential
arises for a fixed grid solution. This will have advan-
tages in terms of simplifying the numerical modelling
requirements, particularly in systems for which the
phase change may only be a component part. Exam-
ples of fixed grid solutions of convection~diffusion
phase change can be found in Morgan [5], Gartling
[6] and Voller et al. [7-9].

The major problem with fixed grids is in accounting
for the zero velocity condition as the liquid region
turns to solid. Morgan [5] employs the simple
approach of fixing the velocities to zero in a com-
putational cell whenever the mean latent heat content,
AH, reaches some predetermined value between 0 (cell
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all solid) and L (cell all liquid), where L is the latent
heat of the phase change. Gartling [6] employs a more
subtle approach in making the viscosity a function of
AH such that as AH decreases from L to 0 the value
of the viscosity increases to a large value thus simu-
lating the liquid—solid phase change.

Voller et al. [7-9] have investigated various ways
of dealing with the zero solid velocities in fixed grid
enthalpy solutions of freezing in a thermal cavity. At
the same time they proposed an alternative but similar
approach to that used by Gartling [6]. Computational
cells in which phase change is occurring, ie.
0 < AH < L, are modelled as pseudo porous media
with the porosity, 4, decreasing from 1 to 0 as AH
decreases from L to Q. In this way, on prescribing a
‘Darcy’ source term, velocities arising from the sol-
ution of the momentum equations are inhibited,
reaching values close to zero on complete solid for-
mation.

To the authors’ knowledge all applications of
convection~diffusion phase-change numerical meth-
odologies have been to isothermal phase-change prob-
lems. These applications assume that the liquid-solid
phase change occurs in a pure material. In many prac-
tical situations, however, the material under con-
sideration is not pure (e.g. a metallurgical alloy). In
such cases the phase change takes place over a tem-
perature range, ¢ < T < —g¢say. That is, the evolution
of latent heat has a functional relationship with tem-
perature, ¢.g. AH = f(T), as opposed to the step
change associated with an isothermal phase change.
Problems of this type are often referred to as mushy
region problems to indicate the solid plus liquid state
of the material in the phase-change range.
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NOMENCLATURE
A porosity function ¥,z  coordinate directions.
a’s  coeflicients in numerical scheme
C porosity constant Greek symbols
¢ specific heat o7 thermal diffusivity
f(T) enthalpy temperature function B thermal coefficient of expansion
F local liquid fraction € half mushy range
F, local solid fraction A porosity
g gravity U viscosity
/ sensible heat p density.
H total enthalpy (sensible plus latent)
AH  latent heat Subscripts
K permeability H high neighboring node
k conductivity L low neighboring node
L latent heat of phase change | liquid value
P pressure N north neighboring node
q small constant to avoid division by zero P node point
S,, S. momentum source term S south neighboring node
Sy Boussinesq source term s solid value.
S enthalpy source term
T temperature Other symbols
t time ()Y oldvalue
u velocity, (v, w) {4, Bl maximum value of A and B
i, Hiquid velocity [}, nthiterative value.

In a numerical modelling analysis of a mushy region
solidification the enthalpy is a sound starting point in
that any functional relationship AH = f(T) may
be readily incorporated into the enthalpy definition.
Furthermore, in problems that involve convection in
the melt, the Darcy source approach proposed by
Voller et al. [7-9], something of a numerical ‘fix’ in
the isothermal case, now has some physical sig-
nificance. For example, in metallurgical problems, it
is fairly standard practice to model the flow in the
mushy region via a Darcy law, see Mehrabian et al.
[10].

The purpose of this paper is to present an enthalpy
formulation based fixed grid methodology for the
numerical solution of convective—diffusion controlled
mushy region phase-change problems. The method is
general and can handle situations where phase
changes occur at a distinct temperature (pure
material) or over a temperature range (alloys). Further,
the functional relationship AH = f(T) can be of any
form, though a linear relationship is used in the cur-
rent work. The Darcy source approach is used to
simulate motion in the mushy region. The essence of
the paper is to present the basic methodology ; the test
example chosen is primarily a vehicle to explain the
details of the procedure.

2. A TEST PROBLEM

The configuration for the test problem employed in
this paper is illustrated in Fig. 1. The basic features of

the problem are the same as previous studies of freez-
ing in a thermal cavity, see Voller et al. [7-9], Albert
and O’Neill [4], and Morgan [5]. Initially the liquid in
the cavity is above the freezing temperature. At time
¢t = 0 the temperature at the surface y = 0 is lowered
and fixed at a temperature below the freezing tem-
perature so that as time proceeds a solid layer attaches
to this surface. The essential and important difference
in this work is the introduction of a mushy region,
which is defined as follows. The enthalpy of the
material (the total heat content) can be expressed as

H=h+AH

1.e. the sum of sensible heat, # = ¢T, and latent heat
AH. In order to establish a mushy phase change the
latent heat contribution is specified as a function of
temperature, T

AH = f(T). )

On recognizing that latent heat is associated with the
liquid fraction in the mushy zone a general form for
Sf(T) can be written

L, T=2T,
(T =LO0=F), T1>T>T, (2)
0, T< T,

where F(T) is the local solid fraction, T the liquidus
temperature at which solid formation commences and
T, is the temperature at which full solidification is
achieved. The task of fully defining the nature of the
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INSULATED

DIMENSIONS 1 X 1

T COLD|= -0.5

TINT = 0.5

T HOT]= 0.5

INSULATED

Fii. 1. The thermal cavity.

latent heat evolution in the mushy region is that of
identifying the form of the local solid fraction—tem-
perature relationship, i.e. F,(T). In the current work
a simple linear form is chosen

0, T>e
F(T)={(6=D)2, £>T>—¢ 3)
1 T< ~s

where the temperature has been scaled such that 7= ¢
and —e¢ are the liquidus and solidus temperatures,
respectively. The quantity ¢ is referred to as the half
temperature range of the mushy zone.

The method to be proposed is not restricted to
the form for F(T) given by equation (3) and it is
recognized that in practical cases such a simple defi-
nition may not suffice. For example in metallurgical
solidification of a binary alloy the function F(7") will
depend on the nature of the solute redistribution and
the associated phase-change equilibrium diagram, see
Flemings [11]. A treatment such as this, however, is
outside the scope of this paper.

The current intention is to develop a basic meth-
odology for the treatment of mushy solidification. In
keeping with this approach the thermal properties
used are assumed constant with temperature and
phase. The values of the properties used along with
the value of appropriate dimensionless numbers are
given in Table 1.

3. THE GOVERNING EQUATIONS

The form of the governing equations for the test
problem of Fig. 1 are similar to the equations for an

isothermal phase change in a cavity derived by Voller
et al. [7-9]. Important differences arise, however, in
the definition of the source terms and in the treatment
of the velocities.

For the purpose of the development of the meth-
odology it is helpful to regard the entire cavity as a
porous medium, where the porosity, 1, takes the
values, 4 = 1 in the liquid phase, 4 =0 in the solid
phase, and 0 < 4 < 1 in the mushy zone. The govern-
ing equations can then be written in terms of the
superficial velocity (i.e. the ensemble-average velocity)
defined as

u = Alu
where u, is the actual fluid velocity. On recognizing

that the porosity 4 = 1 — F, the above relationship can

Table 1. Test problem data

Initial temperature T, =05
Hot wall temperature Ty=035
Cold wall temperature Te=-05
Reference temperature Tes=0.5
Half mushy range £=10.1,00520
Cavity dimension I=1
Density p=1
Specific heat c=1
Viscosity p=1
Conductivity k = 0.001
Coefficient of thermal expansion p=0.01
Gravity g = 1000
Latent heat L=5

So that:

Raleigh number Ra = pgBec(Ty— To)PPfuk = 10%

Prandt] number Pr = uc/k = 10°
Stefan number Ste = L/c(Ty—~T) =5
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be expanded to give
u, in the liquid phase
u=<{0=F)u,
0, in the solid phase.

in the mushy zone

Using this definition along with the assumption of
Newtonian, incompressible, laminar flow the govern-
ing equations are as follows.

Conservation of mass
v ow

5;-5-&:0 @)

where w and v are the superficial velocities in the z-
and y-directions, respectively.

Conservation of momentum

opP
AGL) +div (puw) = div (u gradv)— — +S, (5a)
ot dy
0
(gtw) +div (puw) = div (i grad w)
opP
~ % +S,+S, (5b)

where P is pressure, p is density, u is the liquid
viscosity, u = (v,w), and S,, S,, and S, are source
terms which will be defined below.

The heat equation

oph

o +div (puh) = div (x grad h)—S, =0  (6)

where « = k/c is the thermal diffusivity and S, is a
phases related source term to be discussed below.

4. DEFINITION OF SOURCE TERMS

The above governing equations are in the general
format suggested by Patankar [12] for the numerical
solution of heat and fluid flow problems, i.e. a tran-
sient term plus a diffusive term plus a convective term
plus sources. In this format a problem is driven by the
definition of the source terms.

The S, and S, source terms are used to modify the
momentum equations in the mushy region. If it is
assumed that the flow in the mush is governed by the
Darcy law, i.e.

u= —(K/ugrad P Y

where K, the permeability, is a function of the porosity
A(=1—F). As the porosity decreases the permeability
and the superficial velocity also decrease, down to a
limiting value of zero when the mush becomes com-
pletely solid. In a numerical model this behavior can
be accounted for by defining

S,=—Av and S;= —A4w (8)
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where A increases from zero to a large value as the
local solid fraction F, increases from its liquid value
of 0 to its solid value of 1. The effect of these sources
is as follows. In the liquid region the sources take a
zero value and the momentum equations are in terms
of the actual fluid velocities. In the mushy region the
value of A4 increases such that the value of the sources
begin to dominate the transient, convective, and
diffusive terms and the momentum equation approxi-
mates the Darcy law. As the local solid fraction
approaches 1 the sources dominate all other terms
in the momentum equation and force the predicted
superficial velocities to values close to zero. In the
case of an isothermal problem, where the porosity
approach is a numerical fix, any increasing function
for A would be suitable. For a mushy region phase
change, however, where a porous region does exit,
one can appeal to physics in order to derive a suitable
form for the function ‘4’. A well-known equation
derived form the Darcy law is the Carman—-Koseny
equation [13]

grad P = —C(1—-4)*/A’u. ()

This equation suggests the following form for the
function A4 in equation (8)

A= —C(l—i)A +q). (10)

The value of C will depend on the morphology of
the porous media. In the current study C is assumed
constant and is set to 1.6 x 10%. The constant ¢, intro-
duced to avoid division by zero, is set at 0.001. With
reference to the results, in Section 7, it may be
observed that the chosen value of C is small enough
to allow for significant flow in the mushy region at
low local solid fraction whereas as the limiting value
of 4 (i.e. —C/q) is large enough to suppress the fluid
velocities in the solid. This is suitable behavior if the
proposed methodology is to be fully tested.

The S, source term, in the w momentum equation,
is a buoyancy term used to induce natural convection
in the cavity. Assuming the Boussinesq treatment to
be valid, i.e. density is constant in all terms except a
gravity source term, the buoyancy source term is given
by

Sp = pgBlh—he)/c amn

where f is a thermal expansion coefficient and A, is
a reference value of the sensible heat.

The form of the enthalpy source term S, is derived
from the enthalpy formulation of convection—
diffusion phase change [9]

a'g;tH +div (Hpu)—div (k grad T) = 0.
This equation can be expanded on substitution of
H = ¢T+AH. Then on comparison with equation (6)
and use of the continuity equation, equation (4), it is
seen that

12)

_ OpAH

Sy = r +div (puAH). (13)
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In the isothermal case due to the step change in AH
along with a zero velocity at the solid-liquid interface
the convective part of this source term takes the value
zero. In a mushy region case, however, the convective
term needs to be included.

THE BASIC NUMERICAL SOLUTION

numericallv solve the gn\mrr\lno eq

UL A Y SNV LOC

To equations along
with the associated source terms a finite domain
method is used. This is fully implicit in time and uses
upwind differencing in space. As an example of the
form the discretization takes consider the heat
equation, equation (6). The finite domain discre-
tization, following the notation in Patankar [12] and
referring to Fig. 2, gives

aphp = aHhH + aLhL + aNhN —}—{15}25 +a§’>h§ +b (14}

where the subscripts indicate the appropriate nodal
vaiues, the a’s are coefficients which depend on the
diffusion and convective fluxes in to the pth control
volume, ap = p dz dy/ét and { )° represents evaluation
at the previous time step. The parameter b incor-
porates a discretized form of the source term S;.

The discretized form of the momentum equations
are very similar to equation (14). An important
difference is that the grids used are ‘staggered’ over
the enthalpy grid (see the dashed control volumes in
Fig. 2). The reason for this is so that the pressure,
which is the driving force for the velocities, can be
correctly accounted for. For more details see Patankar
[12]. A consequence of the staggered grid approach is
that care has to be taken in numerically implementing
momentum sources which depend on enthalpy.

The finite domain equations are solved by employ-
ing the PHOENICS code. This code uses a similar
algorithm to the SIMPLE algorithm outlined by

Table 2. Grid dependence

Size Fraction of solid at ¢ = 250
10x 10 0.85
20 % 20 0.82
40 x 40 0.81

Patankar [12]. The numerical representation of vari-
ous source terms is discussed in the Appendix. Of
particular importance is the treatment of the latent
heat source term S, given by equation (13). Given a
distribution of the AH field (and hence §,), equation
(6) can be solved to obtain the sensible heat 4. To

complete the computational cycle, AH needs to be
iterativelv undated from the predicted 4 field. The pro-

ARLIQUVelY Lpaaill 11O B0 PRSI A2, 22

cedure for this iterative updating is seen as a main
contribution of this paper, it is fully described in the
Appendix. Details regarding the PHOENICS
implementation may be found in ref. [14].

6. IMPLEMENTATION

The proposed test problem is solved on a 40 x 40
uniform square grid. A fixed time step of 67 = 10 was
used in all runs and the maximum simulation time
was ¢ = 1000. The grid size of 40 x40 was reached
after a grid refinement study. Essentially the total
fraction of solid at ¢ = 250 was recorded for uniform
grid sizes 10 x 10, 20 x 20 and 40 x 40. The results of
this study are summarized in Table 2. In each time step
50 iteration sweeps were used to solve the discretized
equations. No under relaxation parameters were
employed. The runs were performed on a Convex CI.,
The longest run (simulation to ¢ = 1000) required of
the order of 6 cpu hours.

L]
L
y 4——5,.—-—0
8 - south node L - low Vr| - velocity at north face
N - north node H - high W, - velocity at high face

h

FiG. 2. The numerical control volumes.
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t =250

t =1000

Y

F1G. 5. Development of ¢ = 0.1 mushy region.

7. RESULTS

Figure 3 shows the position and shape of the mushy
region (¢ =0.1) and the related flow field at time
t = 1000. The solidus line, i.e. the temperature iso-
therm 7T = —¢, shows small deformation due to con-
vection similar in shape to the deformation predicted
in an isothermal phase-change case. The liquidus
front, however, (T = ¢) shows a pronounced ‘bulge’
along the lower wall (z = 0). This bulge is a direct
effect of the convection in the mushy zone. The flow
direction, away from the cold wall (y = 0), increases
the heat loss in this area and hence extends the mushy
region. At the same time the return flow, from the hot
wall (v = 1), retards the growth of the mushy region
at the top of the cavity making the bulge at the bottom
more acute.

Figure 4 shows the isotherms at r = 1000. In the
liquid portion of the cavity these isotherms are in
qualitative agreement with other studies of natural
convection in a thermal cavity, De Vahl Davis [15].

Figure 5 shows the development of the & = 0.1
mushy region, along with the movement of the 7= 0
isotherm, at time steps ¢ = 100, 250, 500 and 1000.
The bulge is noticeable at very early time steps. Fur-
thermore, there appears to be some ‘remelting’ of the
mushy region near the top of the cavity as a steady
state is reached. Such remelting behavior can be

explained in terms of the transient modification of the
velocity field. At initial times the velocity near the
top wall is small due to the no-slip condition. Hence
significant solidification occurs in this area. At later
times, the greater momentum of the fluid creates larger
velocities near the top of the wall and remelting
occurs.

Figure 6 shows the effect of reducing the size of the
mushy region down to the isothermal case. When
& = 0.05 the deformation at r = 1000 is reduced. In
the isothermal case there is no pronounced bulge and
the position and shape of the phase-change front is
consistent with that previously observed by Volier et
al. [1-9]. ‘

The results in Fig. 6 suggest that the nature of the
flow in the mushy region will influence its shape. The
flow in the mushy region will be governed by the
assumed nature of the porosity—permeability relation-
ship, see equation (10). To demonstrate this a run was
carried out with the parameters in equation (10) set at

C=160x10° and ¢=0.1

With these choices the final value of the porosity
source, at full solidification, will be the same, but
the size of the source will increase more rapidly at
commencement of the phase change. This will have
the effect of reducing the flow in the mushy region.
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(isothermat)

Fi1G. 6. Effect of mushy size at 1 = 1000.

Figure 7 shows results using the revised porosity
source with all other conditions the same as in Fig. 3.
These results clearly indicate the effect of a reduced
flow in the mushy region with the liquidus defor-
mation very much reduced. If the proposed meth-
odology is to be used to investigate ‘real’ systems then
clearly care has to be taken in defining the nature
of the porosity source. In particular relationships

between the morphology of the mushy region and the

porosity source need to be investigated.

8. CONCLUSIONS AND DISCUSSION

The principal aim of this work has been to develop
a generalized methodology for the modelling of mushy
region phase change. This motivated the development
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of a fixed grid approach along with retaining the basic
form of the hydromechanical equations. The phenom-
ena associated with a particular phase change can
be modelled on careful consideration and choice of
source terms. The driving source terms are the ‘Darcy’
source and the latent heat source.

The Darcy source is used to model the effect of the
nature of the porosity of the mushy region on the flow
field. Preliminary results suggest that the nature of the
porosity has a significant effect.

The latent heat source term is a function of the solid
fraction which is a function of temperature. In this
paper a linear change was assumed. In real systems
the solid fraction-temperature relationship may not
be such a simple form. In a binary alloy for example
F, will depend on the nature of the solute redis-
tribution and may ‘take a non-linear form possibly
with a jump discontinuity af a eutectic front.

There is a need for further studies to be made. In
particular:

(1) A comparison between the proposed fixed grid
method and a deforming grid technique. Such a study
would provide a mechanism by which the relative
advantages and disadvantages of each approach could
be analyzed.

(if} An investigation into various approaches and
models of flow in the mushy zone. Important ques-
tions in such a stady will be; What is an appropriate
form for the morphology-porosity relationship? and ;
Is the Darcy law appropriate? (i.e. should an alter-
native such as the Brinkman equation be used [16]).
An investigation of this type could have particular
relevance in applications of the proposed meth-
odology to metal systems, where the flow in the mushy
zone is significant,

(iif) Some experimental studies are required. The
work presented in this paper lacks any validation. The
authors concede that this is a major deficiency but
are unaware of any suitable experimental studies of
solidification in mushy systems. It is noted, however,
that the isothermal case has been checked against
limiting analytical solutions by Voller ez al. [8,9].

The questions raised on what is the appropriate
form of the sources and the need for further studies
does not detract from the proposed methodology.
Indeed as it stands its framework nature makes it an
ideal vehicle by which such studies can be carried out,
thereby adding to the limited understanding of the
mushy region solidification.
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APPENDIX: NUMERICAL TREATMENT
OF SOURCES

Part A. The enthalpy source

The latent heat source, S,, in equation {14) is considered
to consist of two parts, a transient term and a convective
term. The transient term has the discrete form

@(AHE —AH,) (A1)

where AH is the nodal latent heat (i.e. the mean latent heat
in control volume P). An obvious way of treating this source
term during an iterative solution of equation (14} would be
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to use the iterative update

(AHp)ui 1 = f1(Te),]

where ( ), indicates evaluation at the nth iterative step and
the function f'is defined by equation (2). A drawback to this
approach is that if the mushy range (¢) is small, (73) may
oscillate between values greater than ¢ and values less than
—¢, and hence (AH;), will oscillate between 0 and L, and
convergence will not be achieved. This problem will become
acute as an isothermal phase change is approached. An alter-
native method which avoids this problem is as follows. At
any point in the iterative solution, equation (14) may be
rearranged as

thel.—h = [TERMS), + AH; —[AH¢), (A2)

where

TERMS = [ayhy + a by + axhn+ashs

— (ay + ay + an +ag)hp + 628y x convective source)/ap

with the most current values of the nodal As used. On con-
vergence this equation becomes

hp —hy = TERMS +AHp; —AH,. (A3)
Adding and subtracting appropriate terms to both sides
equation (A3) may be rearranged as

(#pl, — 5 + hp —[hp], = [TERMS], + (TERMS)c
+(AHR ~[AH,),)— (AHp — [AHp],)

where TERMS has been written as [TERMS],+ (TERMS)¢
(i.e. the nth iterative value plus a correction). Subtraction
of equation (A2) leads to the following expression for the
latent heat content

AHp = [AHp), + 7], + (TERMS)c — hp.

An appropriate iterative scheme can now be developed. The
value of (TERMS)c can be ignored (note its value will be
zero on convergence) and the value of the nodal sensible heat
can be approximated as

hy = c*f"'((AH:],)

where ' is the inverse of the latent heat function given in
equation (1). These approximations lead to the following
updating scheme for calculating the nodal latent heat in the
source term equation (A1)

[AHpl .y = [AHpL +[he) —c /7 ([AHRL).  (A4)

Note that, this scheme will be consistent with the case of an
isothermal phase change because /' is well defined, whereas
fis multivalued at the phase-change temperature. In addition
the scheme ensures that no serious oscillations occur in the
predicted temperatures from one iteration to the next.

V. R. VoLLER and C. PRAKASH

The convective part of the latent heat source, i.e.
—div (puAH)

is treated via an upwinding discretization. The contribution
to the source term may be written in the form

(INFLOW)— (OUTFLOW) (AS)

with
INFLOW = |[F,,01|AHs —|[— F;, 0] AH,

+I[F), 0jAH, —|[— F,,0AH,
and
OUTFLOW = |[F,,0)|AH,—|[— F,,0llAHy

+1[F,, 0llAHy —|[— F,, OllAHY,
where |{a, b]| means the maximum of @ and b and

F, = pv,0z, etc.

are evaluated at the cell faces of the enthalpy control
volumes. Note the velocity v, is the y-velocity on the north
face of the pth enthalpy control volume, i.e. the nodal vel-
ocity of the pth ‘v-velocity” control volume, see Fig. 2. In
essence the formulation of the convective boundary con-
dition states that the convective losses or gains in latent heat
are governed by the direction of the flow field. It is noted
that Prakash er al. [17] in a steady-state analysis of an arc
welding model obtain a similar convective latent heat source
which is also treated via an upwind differencing scheme.

Part B. The momentum source

The momentum source term corresponding to the
Boussinesq approximation is added to the discretized w
momentum equation in the form

pgBhe —hrer) ¢ 326y.

The porosity of a control volume in the mushy phase is equal
to the mean liquid fraction of that control volume. This
value can be estimated as AHp/L if the control volume is an
enthalpy control volume. For velocity control volumes the
liquid fraction can be estimated on averaging the latent heat
contents of the enthalpy control volumes over which the
velocity control volume is staggered. That is in the pth v-
velocity control volume

[AHR = (AHp+AHY)/2
and in the pth w-velocity control volume
[AHR]" = (AHp + AHY)/2.

On dividing these values by the latent heat of the phase
change L the appropriate control volume porosities can be
calculated. These values can then be used in modifying the
ap coefficients of the discretized momentum equations via
the use of the function A defined in equation (10).

MODELISATION NUMERIQUE A GRILLE FIXE POUR LA REGION TROUBLE DE
CONVECTION DANS LES PROBLEMES DE CHANGEMENT DE PHASE

Résumé—Une formulation enthalpique basée sur une méthodologie a grille fixe est développée pour la

résolution numérique des problémes de changement de phase avec une région trouble contrélée par la

convection. La méthode proposée repose sur la représentation par des sources convenablement choisies de

I’évolution des chaleurs latentes et de I'écoulement dans la zone trouble liquide—solide. Il y a une compléte

liberté dans la méthodologie pour la définition de telles sources de telle sorte qu'on peut modéliser une

grande variété de situations. On étudie la congélation dans une cavité avec convection naturelle pour
démontrer ’application de la méthode.
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EINE NUMERISCHE FESTGITTERMETHODE FUR UBERGANGSGEBIETE BEI
PHASENWECHSELPROBLEMEN MIT KONVEKTION UND DIFFUSION

Zusammenfassung—Ein Festgitter-Verfahren, welches auf Enthalpiebilanzen basiert, wurde zur numer-
ischen Lésung von Konvektions—Diffusionsgesteuerten Problemen des Phaseniibergangs entwickelt. Der
grundlegende Unterschied der vorgestellten Methode liegt in der Beriicksichtigung der Entstehung der
latenten Wirme und der Stromung in der Fest-fliissig-Ubergangszone durch geeignet gewihlte Wir-
mequellen. Fiir die Definition solcher Quellen hat man vollkommene Freiheit, sodal eine Vielzahl von
Phasenwechselvorgingen modelliert werden kann. Ein Testproblem des Gefriervorganges in einem ther-
mischen EinschluB unter natiirlicher Konvektion wird benutzt, um die Anwendung dieser Methode zu
zeigen.

YHUCJIEHHOE MOJEJIMPOBAHHE 3AJJAY ®A30BOI'O NMEPEXOJA C YYETOM
KOHBEKIIUU U JH®PY3IUN

Amnoramus—Ha OCHOBe HTaNbNHIHOK GOPMYIHPOBKH HCIOJNB3YETCA METOI HEMOOBMXKHOW CETKH LA

YHC/IEHHOTO pelleHns 3ama¥ ¢a3oBoro mepexoja C y4eToM KOHBeKUMH H OHddy3un. XapaktepHoit

YepTOH NpeNIaracMoro MeTOAa SBJACTCH NMPEACTABJICHHE YACIBHOH TemoThl (a3oBoro mepexoza M

OTOKA B 30He (a30BOTO MEPEXOAA TBEPAOE TEIO—KUAKOCTH C MOMOLIBIO COOTBETCTBEHHO BHIOpPAHHBIX

HCTOYHHKOB. BEIGOP 3THX MCTOYHHKOB NMPEANONAraeTCs TAKHM, YTO MO3BOJAET MOJEIMPOBATE Pa3iHd-

Hble clly4au $a3oBLIX NpeBpallieHUd. B kayecTBe WLTIOCTPAUMH PACCMATPHUBAETCA 3aJa4Ya O 3aMep3aHul
B MOJIOCTH NPH €CTECTBEHHOH KOHBEKLHH.



