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Abstract-An enthalpy formulation based fixed grid methodology is developed for the numerical solution 
of convection-diffusion controlled mushy region phase-change problems. The basic feature of the proposed 
method lies in the representation of the latent heat of evolution, and of the flow in the solid-liquid mushy 
zone, by suitably chosen sources. There is complete freedom within the me~odoIo~ for the definition of 
such sources so that a variety of phase-change situations can be modelled. A test problem of freezing in a 

thermal cavity under natural convection is used to demonstrate an application of the method. 

1. INTRODUCTION 

A LARGE number of numerical techniques are avail- 
able for the solution of moving boundary problems, 
a comprehensive review has been presented by Crank 
[l]. The majority of these techniques are concerned 
with phase change in which conduction is the principal 
mechanism ofheat transfer. In physical systems which 
involve a liquid-soiid phase change, however, con- 
vection effects may also be important. AS such, the 
problem of freezing of a pure liquid in a thermal cavity 
under conduction and natural convection has received 
some attention in recent years. For example see Rama- 
chandran et al. [2], Gadgil and Gobin [3] and Albert 
and O’Neill [4]. In these works, a temperature for- 
mulation is used, and in order to treat the moving 
liquid-solid interface, deforming grids have been 
employed. An alternative approach is to use an 
enthalpy formulation in which case no explicit con- 
ditions on the heat flow at the liquid-solid interface 
need to be accounted for and therefore the potential 
arises for a fixed grid solution. This will have advan- 
tages in terms of simplifying the numerical modelling 
requirements, particularly in systems for which the 
phase change may only be a component part. Exam- 
ples of fixed grid solutions of convection-diffusion 
phase change can be found in Morgan [5], Gartling 
[6] and Voller et al. 17-91. 

The major problem with fixed grids is in accounting 
for the zero velocity condition as the liquid region 
turns to solid. Morgan [5] employs the simple 
approach of fixing the velocities to zero in a com- 
putational cell whenever the mean latent heat content, 
AH, reaches some predetermined value between 0 (cell 

ail solid) and L (cell all liquid), where L is the latent 
heat of the phase change. Gartling [6] employs a more 
subtle approach in making the viscosity a function of 
AH such that as AH decreases from L to 0 the value 
of the viscosity increases to a large value thus simu- 
lating the liquid-solid phase change. 

Voller et al. [7-91 have investigated various ways 
of dealing with the zero solid velocities in fixed grid 
enthalpy solutions of freezing in a thermal cavity. At 
the same time they proposed an alternative but similar 
approach to that used by Gartling [6]. Computational 
cells in which phase change is occurring, i.e. 
0 < AH < L, are modelled as pseudo porous media 
with the porosity, A, decreasing from 1 to 0 as AH 
decreases from L to 0. In this way, on prescribing a 
‘Darcy’ source term, velocities arising from the sol- 
ution of the momentum equations are inhibited, 
reaching values close to zero on complete solid for- 
mation. 

To the authors’ knowledge ail applications of 
convection~iffusion phase-change numerical met&- 
odologies have been to isothermal phase-change prob- 
lems. These applications assume that the liquid-solid 
phase change occurs in a pure material. In many prac- 
tical situations, however, the material under con- 
sideration is not pure (e.g. a metallurgical alloy). In 
such cases the phase change takes place over a tem- 
perature range, E < T $ --E say. That is, the evolution 
of latent heat has a functional relationship with tem- 
perature, e.g. AH =f(Y), as opposed to the step 
change associated with an isothermal phase change. 
Problems of this type are often referred to as mushy 
region problems to indicate the solid plus liquid state 
of the material in the phase-change range. 
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NOMENCLATURE 

A porosity function Y, 2 coordinate directions. 
a’s coefficients in numerical scheme 
c porosity constant Greek symbols 
C specific heat 

; 

thermal diffusivity 
f( 7’) enthalpy temperature function thermal coefficient of expansion 

4 local liquid fraction half mushy range 

F, local solid fraction 1 porosity 

9 gravity !J viscosity 
h sensible heat P density. 
H total enthalpy (sensible plus latent) 
AH latent heat Subscripts 
K permeability H high neighboring node 
k conductivity L low neighboring node 
L latent heat of phase change 1 liquid value 
P pressure N north neighboring node 

4 small constant to avoid division by zero P node point 
S,, SZ momentum source term S south neighboring node 

& Boussinesq source term S solid value. 

S, enthalpy source term 
T temperature Other symbols 
I time 0 old value 
U velocity, (u, w) j]A, B]] maximum value of A and B 

ui liquid velocity E In nth iterative value. 

In a numerical modelling analysis of a mushy region the problem are the same as previous studies of freez- 
solidification the enthalpy is a sound starting point in 
that any functional relationship AH =f(r) may 
be readily incorporated into the enthalpy definition. 
Furthermore, in problems that involve convection in 
the melt, the Darcy source approach proposed by 
Voller et al. [7-91, something of a numerical ‘fix’ in 
the isothermal case, now has some physical sig- 
nificance. For example, in metallurgical problems, it 
is fairly standard practice to model the flow in the 
mushy region via a Darcy law, see Mehrabian et al. 

HOI. 
The purpose of this paper is to present an enthalpy 

formulation based fixed grid methodology for the 
numerical solution of convective-diffusion controlled 
mushy region phase-change problems. The method is 
general and can handle situations where phase 
changes occur at a distinct temperature (pure 
material} or over a temperature range (alloys). Further, 
the functional relationship AH = f (T) can be of any 
form, though a linear relationship is used in the cur- 
rent work. The Darcy source approach is used to 
simulate motion in the mushy region. The essence of 
the paper is to present the basic methodology ; the test 
example chosen is primarily a vehicle to explain the 
details of the procedure. 

2. A TEST PROBLEM 

The configuration for the test problem employed in 
this paper is illustrated in Fig. 1. The basic features of 

ing in a thermal cavity, see Voller er al. [7-91, Albert 
and O’Neill [4], and Morgan [5]. Initially the liquid in 
the cavity is above the freezing temperature. At time 
t = 0 the temperature at the surface Y = 0 is lowered 
and fixed at a temperature below the freezing tem- 
perature so that as time proceeds a solid layer attaches 
to this surface. The essential and important difference 
in this work is the introduction of a mushy region, 
which is defined as follows. The enthalpy of the 
material (the total heat content) can be expressed as 

H=h+AH 

i.e. the sum of sensible heat, h = CT, and latent heat 
AH. In order to establish a mushy phase change the 
latent heat contribution is specified as a function of 
temperature, T 

AH =f(T). (1) 

On recognizing that latent heat is associated with the 
liquid fraction in the mushy zone a general form for 
f(T) can be written 

i 

L, T> T 

Y(T) = L(1 -K), 7-, > T>, 7’s (2) 
0, T< T, 

where F,(T) is the local solid fraction, T, the liquidus 
temperature at which solid formation commences and 
TV is the temperature at which full solidification is 
achieved. The task of fully defining the nature of the 
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INSULATED 

DIMENSIONS 1 X 1 

T INT = 0.5 

FIG. 1. The thermal cavity. 

latent heat evolution in the mushy region is that of 
identifying the form of the local solid fraction-tem- 
perature relationship, i.e. F,(T). In the current work 
a simple linear form is chosen 

i 

0, T>,& 

F,(T) = (&--)I% E> T> --E (3) 
1, T< -E 

where the temperature has been scaled such that T = E 
and --a are the liquidus and solidus temperatures, 
respectively. The quantity E is referred to as the half 
temperature range of the mushy zone. 

The method to be proposed is not restricted to 
the form for t;,(T) given by equation (3) and it is 
recognized that in practical cases such a simple defi- 
nition may not suffice. For example in metallurgical 
solidification of a binary alloy the function Fs( T) will 
depend on the nature of the solute redistribution and 
the associated phase-change equilibrium diagram, see 
Flemings [ill. A trea~ent such as this, however, is 
outside the scope of this paper. 

The current intention is to develop a basic meth- 
odology for the treatment of mushy solidification, In 
keeping with this approach the thermal properties 
used are assumed constant with temperature and 
phase. The values of the properties used along with 
the value of appropriate dimensionless numbers are 
given in Table 1. 

3. THE GOVERNING EQUATIONS 

The form of the governing zquations for the test 
problem of Fig. 1 are similar to the equations for an 

isothermal phase change in a cavity derived by Voller 
et al. [7-91. Important differences arise, however, in 
the definition of the source terms and in the treatment 
of the velocities. 

For the purpose of the development of the meth- 
odology it is helpful to regard the entire cavity as a 
porous medium, where the porosity, 2, takes the 
values, /I = I in the liquid phase, 1= 0 in the solid 
phase, and 0 -=c I < 1 in the mushy zone. The govern- 
ing equations can then be written in terms of the 
superficial velocity (i.e. the ensemble-average velocity) 
defined as 

ll = lu, 

where II, is the actual fluid velocity. On recognizing 
that the porosity 3, = 1 -F, the above relationship can 

Table 1. Test problem data 

Initial temperature T, = 0.5 
Hot wall temperature Tn = 0.5 
Cold wall temperature T, = -0.5 
Reference temperature r,, = 0.5 
Half mushy range E = 0.1,0.05,0 
Cavity dimension I=1 
Density p=I 
Specific heat c=l 

Viscosity p=l 
Conductivity k = 0.001 
Coefficient of thermal expansion B = 0.01 
Gravity $j = 1000 
Latent heat L=5 

So that : 
Raleigh number Ra = pzgBc(TH - T#/pk = lo4 
Prandtl number Pr = @c/k = 10’ 
Stefan number Sre = L/c( T, - Tc) = 5 

.- 
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be expanded to give 

i 

“I> in the liquid phase 

” = (1 -F,)“,, in the mushy zone 

0, in the solid phase. 

Using this definition along with the assumption of 
Newtonian, incompressible, laminar flow the govern- 

ing equations are as follows. 

Conservation qf mass 

au aw 

ay -+z=o 

where w and v are the superficial velocities in the z- 
and y-directions, respectively. 

Conservation of momentum 

w4 
at +div (JJUV) = div (p grad v) - g + S, 

ay 
@a) 

a(pw) 
at +div (puw) = div (p grad W) 

-g +S,+S,, (Sb) 

where P is pressure, p is density, p is the liquid 
viscosity, u = (v, w), and S,, S,, and S, are source 
terms which will be defined below. 

The heat equation 

aPh 
at +div (puh) = div (c( grad h)- S, = 0 (6) 

where tl = k/c is the thermal diffusivity and S,, is a 

phases related source term to be discussed below. 

4. DEFINITION OF SOURCE TERMS 

The above governing equations are in the general 
format suggested by Patankar [12] for the numerical 
solution of heat and fluid flow problems, i.e. a tran- 
sient term plus a diffusive term plus a convective term 
plus sources. In this format a problem is driven by the 
definition of the source terms. 

The S, and S, source terms are used to modify the 
momentum equations in the mushy region. If it is 
assumed that the flow in the mush is governed by the 
Darcy law, i.e. 

u = -(K/n) grad P (7) 

where K, the permeability, is a function of the porosity 
A( = 1 -F,). As the porosity decreases the permeability 
and the superficial velocity also decrease, down to a 
limiting value of zero when the mush becomes com- 
pletely solid. In a numerical model this behavior can 
be accounted for by defining 

S, = -Au and S,= -Aw (8) 

where A increases from zero to a large value as the 
local solid fraction F, increases from its liquid value 
of 0 to its solid value of 1. The effect of these sources 
is as follows. In the liquid region the sources take a 
zero value and the momentum equations are in terms 
of the actual fluid velocities, In the mushy region the 
value of A increases such that the value of the sources 
begin to dominate the transient, convective, and 
diffusive terms and the momentum equation approxi- 
mates the Darcy law. As the local solid fraction 
approaches I the sources dominate all other terms 
in the momentum equation and force the predicted 
superficial velocities to values close to zero. In the 
case of an isothermal problem, where the porosity 
approach is a numerical fix, any increasing function 
for A would be suitable. For a mushy region phase 
change, however, where a porous region does exit, 
one can appeal to physics in order to derive a suitable 
form for the function ‘A’. A well-known equation 

derived form the Darcy law is the Carman-Koseny 

equation [ 131 

grad P = -C(l -1)2/13u. (9) 

This equation suggests the following form for the 
function A in equation (8) 

A = -C(l -i)‘/(l’+q). (10) 

The value of C will depend on the morphology of 
the porous media. In the current study C is assumed 
constant and is set to 1.6 x 103. The constant q, intro- 
duced to avoid division by zero, is set at 0.001. With 
reference to the results, in Section 7, it may be 
observed that the chosen value of C is small enough 
to allow for significant flow in the mushy region at 
low local solid fraction whereas as the limiting value 
of A (i.e. -C/q) is large enough to suppress the fluid 
velocities in the solid. This is suitable behavior if the 
proposed methodology is to be fully tested. 

The Sb source term, in the w momentum equation, 

is a buoyancy term used to induce natural convection 
in the cavity. Assuming the Boussinesq treatment to 
be valid, i.e. density is constant in all terms except a 
gravity source term, the buoyancy source term is given 

by 
(11) 

where p is a thermal expansion coefficient and href is 
a reference value of the sensible heat. 

The form of the enthalpy source term S, is derived 
from the enthalpy formulation of convection- 
diffusion phase change [9] 

y + div (Hpu) -div (k grad T) = 0. (12) 

This equation can be expanded on substitution of 
H = CT+ AH. Then on comparison with equation (6) 
and use of the continuity equation, equation (4), it is 
seen that 

S =d@H h at +div @AH). (13) 
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In the isothermal case due to the step change in AU 
along with a zero velocity at the solid-liquid interface 
the convective part of this source term takes the value 
zero. In a mushy region case, however, the convective 
term needs to be included. 

5. THE BASIC NUMERICAL SOLUTION 

To numerically solve the governing equations along 
with the associated source terms a finite domain 
method is used. This is fully implicit in time and uses 
upwind differencing in space. As an example of the 
form the discretization takes consider the heat 
equation, equation (6). The finite domain discre- 
tization, following the notation in Patankar [12] and 
referring to Fig. 2, gives 

where the subscripts indicate the appropriate nodal 
values, the a’s are coefficients which depend on the 
diffusion and convective fluxes in to the pth control 
volume, as = p 6z 6y/& and ( >” represents evaluation 
at the previous time step. The parameter b incor- 
porates a discretized form of the source term S,,. 

The discretized form of the momentum equations 
are very similar to equation (14). An important 
difference is that the grids used are ‘staggered’ over 
the enthalpy grid (see the dashed control volumes in 
Fig. 2). The reason for this is so that the pressure, 
which is the driving force for the velocities, can be 
correctly accounted for. For more details see Patankar 
1121. A consequence of the staggered grid approach is 
that care has to be taken in numericaIly implementing 
momentum sources which depend on enthalpy. 

The finite domain equations are solved by employ- 
ing the PHOENICS code. This code uses a similar 
algorithm to the SIMPLE algorithm outlined by 

Table 2. Grid dependence 

Size Fraction of solid at t = 250 

10x 10 0.85 
20x20 0.82 
40x40 0.81 

Patankar [ 121. The numerical representation of vari- 
ous source terms is discussed in the Appendix. Of 
particular importance is the treatment of the latent 
heat source term S, given by equation (13). Given a 
distribution of the AH field (and hence S,,), equation 
(6) can be solved to obtain the sensible heat h. To 
complete the computational cycle, AH needs to be 
iteratively updated from the predicted h field. The pro- 
cedure for this iterative updating is seen as a main 
contribution of this paper, it is fully described in the 
Appendix. Details regarding the PHOENICS 
implementation may be found in ref. [ 141. 

6. IMPLEMENTATION 

The proposed test problem is solved on a 40 x 40 
uniform square grid. A fixed time step of 6t = 10 was 
used in all runs and the maximum simulation time 
was t = 1000. The grid size of 40 x 40 was reached 
after a grid refinement study. Essentially the total 
fraction of solid at t = 2.50 was recorded for uniform 
grid sizes 10 x 10, 20 x 20 and 40 x 40. The results of 
this study are summarized in Table 2. In each time step 
50 iteration sweeps were used to solve the discretized 
equations. No under relaxation parameters were 
employed. The runs were performed on a Convex Cl, 
The longest run (simulation to t = 1000) required of 
the order of 6 cpu hours. 

H 
---_-c_--_ 

I 
I 

I whA 
I 
I 

I I--- ---1 
, I 

S - south node t - low Vn - velocity at north face 

N - north node H - high W,, - velocity at high face 

FIG. 2. The numerical control volumes. 
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e = 0.1 c = 0.5 6 = 0.0 
(isothermal) I-- 

FIG. 6. Effect of mushy size at I = 1000. 

Figure 7 shows results using the revised porosity between the morphology of the mushy region and the 
source with all other conditions the same as in Fig. 3. porosity source need to be investigated. 
These results clearly indicate the effect of a reduced 
flow in the mushy region with the liquidus defor- 
mation very much reduced. If the proposed meth- 8. CONCLUSIONS AND DISCUSSION 

odology is to be used to investigate ‘real’ systems then The principal aim of this work has been to develop 
clearly care has to be taken in defining the nature a generalized methodology for the modelling of mushy 
of the porosity source. In particular relationships region phase change. This motivated the development 

-L +tZ 

vector SCeie: @.500E-01 

> 

FIG. 7. Flow field and mushy region (E = 0. l), t = 1000, for revised source. 
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of a fixed grid approach along with retaining the basic 
form of the ~ydrom~~~ani~a1 equations. The phenom- 

ena associated with a particular phase change can 
be modelled on careful consideration and choice of 
source terms. The driving source terms are the ‘Dar& 
source and the latent heat source. 

The Darcy source is used to model the effect of the 
nature of the porosity of the mushy region on the flow 
field. ~re~~rnina~ results suggest that the nature of the 
porosity has a significant effect. 

The latent heat source term is a function of the solid 
fraction which is a function of temperature. In this 
paper a linear change was assumed. In real systems 
the solid fraction-temperature relationship may not 
be such a simple form. In a binary alloy for example 
F, will depend on the nature of the solitte redis- 
tribution and may ‘take a non-linear form possibly 
with a jump discontinuity at a eutectic front. 

There is a need for further studies to be made. In 
particular : 

(i) A comparison between the proposed fixed grid 
method and a deforming grid technique. Such a study 
would provide a mechanism by which the relative 
advantages and disadvantages of each approach could 
be analyzed. 

odotogy to metal systems, where the flow in the mushy 
zone is significant. 

(ii) An investigation into various approaches and 
models of flow in the mushy zone. Important ques- 
tions in such a study will be; What is an appropriate 
form for the mo~boiogy-porosity relationship? and ; 
Is the Darcy law appropriate? (i.e. should an alter- 
native such as the ~~nkman equation be used [Ifi]). 
An investigation of this type could have particular 
relevance in applications of the proposed meth- 

8. 

9. 

10. 

11. 

12. 

N. Ramachandran, J. R. Gupta and Y. Jalunu, Tbermat 
and fluid flow effects during solidi~~tion in a rec- 
tangular cavity, Int. J. Heat Mass Tran@i?r 25, 187-194 
(1982). 
A. Gadgil and D. Gobin, Analysis of two dimensionai 
melting in rectangular enclosures in the presence of con- 
vection, .I. ileat Transfer 106,20-26 (1984). 
M. R. Albert and K. O’Neill, Transient two-dimensional 
phase change with convection using deforming finite 
eiemenls. In Computer Techniques in Heat Transfer 
(Edited by R. W. Lewis, K. Morgan, J. A. Johnson and 
W. R. Smith), Vol. l. Pineridge Press, Swansea (1985). 
K. Morgan, A numerical analysis of freezing and 
meltinn with convection. Comu. Meth. ADDI. Enana 28, 
275-2%4(1981). _ As - _ 
D. K. Gartling, Finite element analysis of convective 
heat transfer problems with change of phase. In Cam- 
pufer Methods in Fluids (Edited by K. Mornan et al.), 
pp. 257-284. Pentech, London (1980). - 
V. R. Volier. N. C. Markatos and M. Crass. Techniques 
for accoun& for the moving interfaie in con- 
v~tio~/diffusi~n phase change. 1; Numerical Methods 
in Thermal Problems fEdited bv R. W. Lewis and K. 
Morgan), Vol. 4, pp. 5&609. Pineridge Press, Swansea 
(1985). 
V. R. Voller, N. C. Markatos and M. Cross, Sol- 
idification in convection and diffusion. In Numerical 
Simulations of Fluid Flow and Heat/Mass Transfer Pro- 
cesses (Edited by N. C. Markatos, D. G. Tatchell, M. 
Cross and N. Rhodes), pp. 425-432. Springer. Berlin 
(1986). 
V. R. Voller, M. Cross and N. C. Markatos, An enthalpy 
method for convection/diffusion phase changes. Inr. J. 
Num. Meth. Engng 24,2?1&284 (1987). 
R. Mehrabian, M. Keane and M. C. Flemings, Inter- 
dendritic fluid flow and macrosegreeation : influence of 
gravity, Met. Trans. 5 I, 12~.-1~20-(1970~ 
M. C. Flemings, So~jd~euf~on Processing. McGraw-~il1, 
New York (1974). 
S. Y. Pantankar, _~~rner~~o~ Heat Transfer and Fluid 
Flow. Hemisphere, Washington, DC (1980). --- 

4. V. R. Voller &d C. Prakash,‘ A fixed grid numerical 

13. P. t‘. Carman, I-&id flow through granular beds> Trans. 

modelling methodology for phase change problems 
involving a mushy region and convection in the melt. 

Inst. Chem. Engrs 15, 150-156 (1937). 

PHOENICS Demonstration Report PDR/CI-IAM 
NA/9 (1986). 

(iii) Some experimental studies are required. The 
work presented in this paper lacks any validation. The 
authors concede that this is a major deficiency but 
are unaware of any suitable experimental studies of 
solidification in mushy systems. It is noted, however, 
that the isothermal case has been checked against 
limiting analytical solutions by Volier et nl. [8,9]. 

The questions raised on what is the appropriate 
form of the sources and the need for further studies 
does not detract’ from the proposed methodology. 
Indeed as it stands its framework nature makes it an 
idea1 vehicle by which such studies can be carried out, 
thereby adding to the limited understanding of the 
mushy region solidification. 
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APPENDIX: NUMERICAL TREATMENT 
OF SOURCES 

Part A. The enthalpy source 
The latent heat source, S,, in equation (14) is considered 

to consist of two parts, a transient term and a convective 
term. The transient term has the discrete form 

ag(AH; -AHp) (AlI 

where A.H is the nodal latent heat (i.e. the mean latent heat 
in con&o1 volume F). An obvious way of treating this source 
term during an iterative solution of equation (14) would be 
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to use the iterative update 

(AH&+ 1 =f[(~d.l 

where ( ), indicates evaluation at the nth iterative step and 
the functionfis defined by equation (2). A drawback to this 
approach is that if the mushy range (E) is small, (Tr) may 
oscillate between values greater than E and values less than 
--E, and hence. (AH,), will oscillate between 0 and L, and 
convergence will not be achieved. This problem will become 
acute as an isothermal phase change is approached. An alter- 
native method which avoids this problem is as follows. At 
any point in the iterative solution, equation (14) may be 
rearranged as 

[hp]” - h; = [TERMS], + A% - [AHp], 642) 

TERMS = [aHhH + aLhL + aNhN + ashs F, = po,dz, etc. 

- (a” + aL + aN +as)h, +SzGy x convective source]/aF 

with the most current values of the nodal hs used. On con- 
vergence this equation becomes 

hp--h; = TERMS +AH”,-AH,. (A3) 

Adding and subtracting appropriate terms to both sides 
equation (A3) may be rearranged as 

[hp], -h; + h, - [hp]. = [TERMS], + (TERMS)c 

are evaluated at the cell faces of the enthalpy control 
volumes. Note the velocity v, is the y-velocity on the north 
face of the pth enthalpy control volume, i.e. the nodal vel- 
ocity of the pth ‘u-velocity’ control volume, see Fig. 2. In 
essence the formulation of the convective boundary con- 
dition states that the convective losses or gains in latent heat 
are governed by the direction of the flow field. It is noted 
that Prakash et al. [17] in a steady-state analysis of an arc 
welding model obtain a similar convective latent heat source 
which is also treated via an upwind differencing scheme. 

+ (AH: - WPI.) - @HP - P&l.) 
where TERMS has been written as [TERMS],+ (TERMS)c 
(i.e. the nth iterative value plus a correction). Subtraction 
of equation (A2) leads to the following expression for the 
latent heat content 

Part B. The momentum soww 
The momentum source term corresponding to the 

Boussinesq approximation is added to the discretized w 
momentum equation in the form 

AHp = [AH& + [hr], + (TERMS)c - hr. 

An appropriate iterative scheme can now be developed. The 
value of (TERM% can be ignored (note its value will be 
zero on convergence) and the value of the nodal sensible heat 
can be approximated as 

The porosity of a control volume in the mushy phase is equal 
to the mean liquid fraction of that control volume. This 
value can be estimated as AH,/L if the control volume is an 
enthalpy control volume. For velocity control volumes the 
liquid fraction can be estimated on averaging the latent heat 
contents of the enthalpy control volumes over which the 
velocity control volume is staggered. That is in the pth n- 
velocity control volume 

hr = c .f ’ ([~HA) 
wheref- ’ is the inverse of the latent heat function given in 
equation (1). These approximations lead to the following 
updating scheme for calculating the nodal latent heat in the 
source term equation (Al) 

Wbl.,, = Wf~ln + M. -c-f - ' W&l.). (‘44) 

Note that, this scheme will be consistent with the case of an 
isothermal phase change becausef- ’ is well defined, whereas 
fis multivalued at the phase-change temperature. In addition 
the scheme ensures that no serious oscillations occur in the 
predicted temperatures from one iteration to the next. 

The convective part of the latent heat source, i.e. 

- div @AH) 

is treated via an upwinding discretization. The contribution 
to the source term may be written in the form 

(INFLOW) - (OUTFLOW) 

with 

INFLOW = ][F,,O]]AHs-I[-F,,O]]AH, 

(A5) 

and 

OUTFLOW = I [F,,O]]AH, - I[-F,, OIlAH, 

where I [a, b] 1 means the maximum of a and b and 

[AH,]” = (AH, +AH,)/2 

and in the pth w-velocity control volume 

[AHJ = (AHp +AHn)/2. 

On dividing these values by the latent heat of the phase 
change L the appropriate control volume porosities can be 
calculated. These values can then be used in modifying the 
ap coefficients of the discretized momentum equations via 
the use of the function A defined in equation (10). 

MODELISATION NUMERIQUE A GRILLE FIXE POUR LA REGION TROUBLE DE 
CONVECTION DANS LES PROBLEMES DE CHANGEMENT DE PHASE 

R&sum&-Une formulation enthalpique basee sur une mtthodologie a grille tixe est developpee pour la 
resolution numerique des problemes de changement de phase avec une region trouble control&e par la 
convection. La methode proposte repose sur la representation par des sources convenablement choisies de 
l’tvolution des chaleurs latentes et de I’ecoulement dans la zone trouble liquid*solide. 11 y a une complete 
liberte dans la mtthodologie pour la definition de telles sources de telle sorte qu’on peut modtliser une 
grande variitt de situations. On btudie la congelation dans une cavitb avec convection naturelle pour 

demontrer l’application de la methode. 
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EINE NUMERISCHE FESTGITTERMETHODE FUR UBERGANGSGEBIETE BE1 
PHASENWECHSELPROBLEMEN MIT KONVEKTION UND DIFFUSION 

Zusammenfaaaung-Ein Festgitter-Verfahren, welches auf Enthalpiebilanzen basiert, wurde zur numer- 
ischen Lijsung von Konvektions-Diffusionsgesteuerten Problemen des Phaseniibergangs entwickelt. Der 
grundlegende Unterschied der vorgestellten Methode liegt in der Beticksichtigung der Entstehung der 
latenten WHrme und der Striimung in der Fest-fliissig-Ubergangszone durch geeignet gewiihlte WCr- 
mequellen. Fiir die Definition solcher Quellen hat man vollkommene Freiheit, sodall eine Vielzahl von 
Phasenwechselvorglngen modelliert werden kann. Ein Testproblem des Gefriervorganges in einem ther- 
mischen Einschlul) unter natilrlicher Konvektion wird benutzt, urn die Anwendung dieser Methode zu 

zeigen. 

9HCJIEHHOE MO~EJIUPOBAHHE 3AjIA9 cDA30BOFO I-IEPEXOAA C Y’IETOM 
KOHBEKHMH H JHI@@Y3MH 

AmsoTamna-Ha ocuoae 3riTanbndhioii @O~M~~X~~OBKH ncnonbsyercn MeTon HenonewmHofi ceTwi arm 

wicnetiHor0 peuretisin 3ana9 @a30Boro nepexona c yve~o~ K~HEZ~KUHH H &I@Y~HH. XapaKTepHoB 

YepToi npeanaraerdoro MeTona RBJISCTCK npeJlcTaBneHHe yAeJIbHOZi TenJIOTbI ~a3oBoro nepexona w 

IlOTOKa B 30He ,$a3OBOrO IIepeXOna TBepnOeTeJIO-IKHlJKOCTb C llOMOUU40 COOTBeTCTBeHHO Bbl6paHHblX 

HCTOSHHKOB. Bbr60p ~THX IICTOSHHKOB npennonaraercr TaxHht,wo n0380nneT MonentipoeaTb pa3ntiw 

HbrecnyvaH +a308btx npeepauresd B xawcrne iuunocqauw pacchtaTptisaeTcn sanara 0 3aMep3awiki 

BllOJNJCTH~pHeCTeCTLleHHOiiKOHBeKUHH. 


